
The Game of Life is a well-known mathematical game that gives rise to amazingly
complex behavior, although it can be specified by a few simple rules. (It is not actually a
game in the traditional sense, with players competing for a win.) Here are the rules. The
game is played on a rectangular grid. Each square on the grid can be either empty
(represented by a 0 in our version) or occupied by a "living" cell (represented by a 1). At
the beginning, you can specify empty and occupied cells in some way; then the game
runs automatically. In each generation, the next generation is computed. A new cell is
born on an empty square if it is surrounded by exactly three occupied neighbor cells. A
cell dies of overcrowding if it is surrounded by four or more living neighbors, and it dies
of loneliness if it is surrounded by zero or one living neighbor. A neighbor is an occupant
of an adjacent square to the left, right, top, or bottom or in a diagonal direction. Figure 16
shows a cell and its neighbor cells.

Many configurations show interesting behavior when subjected to these rules. Figure 17
shows a glider, observed over five generations. Note how it moves. After four
generations, it is transformed into the identical shape, but located one square to the right
and below.

One of the more amazing configurations is the glider gun: a complex collection of cells
that, after 30 moves, turns back into itself and a glider (see the large figure at the end).

Over the next week, you will use Python to program the game to eliminate the drudgery
of computing successive generations by hand. Your homework assignment will come in
two parts, also known as Programming Assignment 6 and Programming Assignment 7.
The Wikipedia page on The Game of Life has a lot of useful information, as well as
some real-time examples of program behavior. You should take a look at it.

Implementing this game requires a plan for what to do about the cells at the edges of the
grid, since those cells don't have a full complement of eight neighbors. The Wikipedia
entry does bring up this issue, and options range from simple to complex. For our
purposes, it is sufficient to assume that every square outside of the grid is empty (i.e., 0)
and will remain empty for the duration of the game.

(Much of the description above, and all the figures below, is borrowed from a textbook
by Cay Horstmann.)

Programming Assignment 6 - Game of Life, Part 1

Your solution is to be written using Python 3. Make sure you provide comments
including the file name, your name, and the date at the top of the file you submit.
Also make sure to include appropriate docstrings for all functions.

The names of your functions must exactly match the names given in this assignment.
The order of the parameters in your parameter list must exactly match the order
given in this assignment.

For any given problem below, you may want to write additional functions other
than those specified for your solution. That's fine with us.

The	core	problem	to	be	solved	in	the	implementation	of	the	Game	of	Life	is	how	to	
generate	the	next	grid	from	the	current	grid.		Your	task	is	to	write	a	function	called	
nextGen	which	expects	only	one	argument.		That	argument	is	a	two-dimensional	
table	(i.e.,	a	list	of	lists)	with	m	rows	and	n	columns,	representing	the	current	grid.		
The	elements	of	the	table	are	either	0	(empty	square)	or	1	(occupied	square).		You	
may	assume	that	all	rows	have	the	same	number	of	elements.			
	
Given	the	current	grid,	nextGen	computes	and	returns	(but	does	not	print)	a	new	
next	grid	(without	altering	the	current	grid)	by	applying	the	simple	rules	provided	
above.		For	example,	given	this	initial	grid:	
	
glider = [[0,0,0,0,0,0,0],
 [0,0,1,0,0,0,0],
 [0,0,0,1,0,0,0],
 [0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0]]

your function should work like this:

>>> x = nextGen(glider)
>>> x
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]
>>> y = nextGen(x)
>>> y
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]
>>> z = nextGen(y)
>>> z
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]
>>> q = nextGen(z)
>>> q
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0]]

If we formatted those results nicely, we'd see a sequence like this:
generation 1

[[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 1, 0, 0, 0],
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]]

generation 2

[[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 1, 0, 1, 0, 0, 0],
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]]

generation 3

[[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 0],
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]]

generation 4

[[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]]

These grids correspond to the generations in Figure 17. Note that the grid passed to your
function must remain unaltered:

>>> glider
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]

Where to do the assignment

You can do this assignment on your own computer, or in the labs. In either case, use the
IDLE development environment -- that's what we'll use when we grade your program.
Put all the functions you created in a file called "prog67.py". Save that file until you've
completed Programming Assignment 7.

Submitting the Assignment

Do not turn in this assignment by itself. Submit it with the work you do for Programming
Assignment 7.

Saving your work

If you are working in the lab, you will need to copy your program to your own flash-
drive. To save it on flash-drive, plug the flash-drive into the computer (your TA or the
staff in the labs can help you figure out how), open the flash-drive, and copy your work
to it by moving the folder with your files from the Desktop onto the flash-drive.

